

P. Fleurat-Lessard Laboratoire de Chimie Ecole Normale Supérieure de Lyon

Outline

- What CARTE is.
- What CARTE is not.
- How to describe a mechanism
- Some examples
- Conclusions

What CARTE is

- Chemist are interested in reactions
 - Experimentalists
 - Give us reactants, products
 - Want to improve the yield, the enantioselectivity...
 - Mechanisms are the key to this
- On the theoretical side:
 - Quantum approach needed
 - Environment usually important: surface, protein, solvent, temperature, pressure...
 - One needs efficient methods ...

What CARTE is

CARTE is there for you !

Chemins Automatisés pour la Réactivité chimique incluant Température, pression et Environnement

Or

Construction-Automatic of Reaction path with explicit Temperature, pressure, and Environment.

- Goal: Helping you to optimize reaction path
- Tools:
 - Initial path constructed using 'Computer Assisted Chemical Intuition'.
 - Path optimization using fast and efficient algorithms.

What CARTE is not

- A black box:
 - •You do have to help it !
- A magic wand:
 - It cannot know what you really want
- A coffee machine !

How to describe a mechanism

- Mechanism: a special path on the PES connecting reactants to products
- We are looking for the Minimum Energy Path (MEP)
- Working process:
 - Construct an initial path
 - Modify/Optimize it to reach the MEP

How to describe a mechanism

• Ex: HCN \rightarrow CNH

Result:

Description is discrete

- How to choose the points ?
 - Equidistant: Fix number of points
- How to ensure good sampling of the path ?
 - String method:
 - Reparameterization from time to time

W. E, W. Ren, E. Vanden-Eijnden PRB 2002, 66, 052301

- We **really** need:
 - A good initial path: rough idea of the RCs
 - A good optimizer: we cannot afford 1000 iterations

Coordinates systems

- Lots of discussions for geometries
- Mainly two families:
 - Cartesian coordinates
 - Internal coordinates:
 - Z-Matrix
 - Natural Coordinates
 - Redundant coordinates
 - Baker coordinates

Coordinates systems

- Lots of discussions for geometries
- Mainly two families:
 - Cartesian coordinates
 - Internal coordinates:
 - Z-Matrix
 - Natural Coordinates
 - Redundant coordinates
 - Baker coordinates

Cartesian coordinates

- Very general
- Easy to compute, store, manipulate

But

- No chemical meaning
- Overall rotation and translation not suppressed

Z-Matrix

- Based on internal coordinates:
 - bond distances, bond angles and dihedrals
- 3N-6 degree of freedom
- С
- H_a C dCH_a
- $H_{b} C dCH_{b} H_{a} \alpha H_{a}CH_{b}$
- $H_{c} C dCH_{c} H_{a} \alpha H_{a}CH_{c} H_{b} DH1$
- $H_{d} C dCH_{d} H_{a} \alpha H_{a}CH_{d} H_{b} DH2$

Z-Matrix

- Based on internal coordinates:
 - bond distances, bond angles and dihedrals
- 3N-6 degree of freedom
 - \leftarrow Origin of the frame
- $H_a C dCH_a \leftarrow z axis$
- $H_{b} C dCH_{b} H_{a} \alpha H_{a}CH_{b} \leftarrow xz plane$
- $H_{c} C dCH_{c} H_{a} \alpha H_{a}CH_{c} H_{b} DH1$

С

 $H_{d} C dCH_{d} H_{a} \alpha H_{a}CH_{d} H_{b} DH2$

Z-Matrix

But

Non unique

How to choose the order of the atoms ?

Z-Matrix

But

Non unique

- How to choose the order of the atoms ?
- Problem for cycles

Z-Matrix

But

- Not unique
 - How to choose the order of the atoms ?
 - Problem for cycles
- Not easy to compute
- Extension: Natural coordinates (Pulay), Redundant Coordinates (Pulay), Baker coordinates...
 - Redundant not yet in CARTE. Soon.

- Cartesian coordinates
 - Same description for all images
 - But
 - Problem of stretched/compressed bonds

- Cartesian coordinates
 - Same description for all images
 - But
 - Problem of stretched/compressed bonds
 - Stupid path
 - HCN \rightarrow CNH might lead to

 $H - C - N \longrightarrow_{Easy to check for HCN...} C - NH \longrightarrow C - N - H$

Cartesian coordinates But not in real life !

- Z-Matrix coordinates
 - Less problem of distorted bonds
 - But
 - Which Z-matrix ?

- Best compromise: mix cartesian and Zmat !
 - Atoms that are 'spectator' are described in cartesian
 - Reactive atoms are described in internal coordinates

CH₃⁻ inversion

Walden inversion:

- Model of SN2 reactions
- Floppy molecules
- Cart vs Zmat
 - Initial path better in Zmat
 - Good optimizer
 - cart 8 iterations
 - Zmat 4

Catalytic hydrogenation on Pt

Reaction:

Catalytic hydrogenation

Initial path
Energies

Catalytic hydrogenation

Final results:

Acknowledgements

People

- P. Dayal: Baker coordinates
- F. Delbecq, J. Garrec, N. Chéron, C. Dupont, N. Dinter, : beta testers.
- MoneyANR

- ANR AGENCE NATIONALE DE LA RECHERCHE
- Région Rhônes Alpes

Thank you for your attention !